
By Bread Boards & Bill

Project # 1 Scanning Radio
AKA Ghost Box

January 23 2022 Part 2

Ghost Box Part 2

Bill Chappell presents this Project, build at your own risk.
The author is not responsible for errors or omissions in
this document.
This Project uses open-source software "arduino.org"
Find links at www.digitaldowsing.com/diy/
The Sketch for Part 2 can be downloaded at:
Part 2 Arduino code

http://arduino.org/
http://www.digitaldowsing.com/diy/
https://www.digitaldowsing.com/wp-content/uploads/2022/01/gb_scan_updn_part_2.zip

Ghost Box Part 2
The goal for part 2, familiarize the reader with the software.
Scanning radios, AKA Ghost Boxes, are based on going from one station to another in increments.

The scan range is typically the whole band the radio can receive.
For example, in the US, the FM broadcast radio band is 87.9 - 108.00.

The FM band is divided into 100 0.2 MHz-wide channels.
 They are designated channels 201 through 300 by the FCC.

Each station is 0.2 MHz apart. Though not every channel is active in a local area. 87.7 Is
considered FM, but classified as channel 200 TV station by the FCC.

For this project, we will scan the active channels for now. So the Scan range will be 87.9 - 107.90 FM.
The scan increment is 0.2 MHz. Finally, the scan rate will be two-hundredths of a second.

We will discuss changing the radio frequency values in a later discussion taking into consideration how they would affect the Ghost
Box functions.

Ghost Box Part 2
Frequen

cy
Channel Frequency Channe

l
Frequency Chann

el
Frequency Channel

87.9 MHz 200 93.1 MHz 226 98.1 MHz 251 103.1 MHz 276

88.1 MHz 201 93.3 MHz 227 98.3 MHz 252 103.3 MHz 277

88.3 MHz 202 93.5 MHz 228 98.5 MHz 253 103.5 MHz 278
88.5 MHz 203 93.7 MHz 229 98.7 MHz 254 103.7 MHz 279

88.7 MHz 204 93.9 MHz 230 98.9 MHz 255 103.9 MHz 280

88.9 MHz 205 94.1 MHz 231 99.1 MHz 256 104.1 MHz 281

89.1 MHz 206 94.3 MHz 232 99.3 MHz 257 104.3 MHz 282

89.3 MHz 207 94.5 MHz 233 99.5 MHz 258 104.5 MHz 283

89.5 MHz 208 94.7 MHz 234 99.7 MHz 259 104.7 MHz 284

89.7 MHz 209 94.9 MHz 235 99.9 MHz 260 104.9 MHz 285

89.9 MHz 210 95.1 MHz 236 100.1 MHz 261 105.1 MHz 286

90.1 MHz 211 95.3 MHz 237 100.3 MHz 262 105.3 MHz 287

90.3 MHz 212 95.5 MHz 238 100.5 MHz 263 105.5 MHz 288

90.5 MHz 213 95.7 MHz 239 100.7 MHz 264 105.7 MHz 289

90.7 MHz 214 95.9 MHz 240 100.9 MHz 265 105.9 MHz 290

90.9 MHz 215 96.1 MHz 241 101.1 MHz 266 106.1 MHz 291

91.1 MHz 216 96.3 MHz 242 101.3 MHz 267 106.3 MHz 292

91.3 MHz 217 96.5 MHz 243 101.5 MHz 268 106.5 MHz 293

91.5 MHz 218 96.7 MHz 244 101.7 MHz 269 106.7 MHz 294

91.7 MHz 219 96.9 MHz 245 101.9 MHz 270 106.9 MHz 295

91.9 MHz 220 97.1 MHz 246 102.1 MHz 271 107.1 MHz 296

92.1 MHz 221 97.3 MHz 247 102.3 MHz 272 107.3 MHz 297

92.3 MHz 222 97.5 MHz 248 102.5 MHz 273 107.5 MHz 298

92.5 MHz 223 97.7 MHz 249 102.7 MHz 274 107.7 MHz 299

92.7 MHz 224 97.9 MHz 250 102.9 MHz 275 107.9 MHz 300

92.9 MHz 225

FCC regulates stations by minimum distance and frequency.

IE:
 Stations on the same channel must be 71 miles apart
 Stations separated by 200 kHz must be 45 miles apart
 Stations separated by 400/600 kHz must be 19 miles apart
 Stations separated by 10.6/10.8 MHz must be 6 miles apart

The closer the stations are to each other, the more significant the
frequency of the stations must differ.

Link to FM data

https://en.wikipedia.org/wiki/FM_broadcasting_in_the_United_States

FM Band Plan by area

https://en.wikipedia.org/wiki/FM_broadcasting_in_the_United_States

https://en.wikipedia.org/wiki/FM_broadcasting_in_the_United_States
https://en.wikipedia.org/wiki/FM_broadcasting_in_the_United_States

New Hardware

Now it's time to add additional hardware.
This section will require a Microphone
to add the Speak When Spoken to option.

Here's a link to the microphone I'm using.
Allow us to add the speak when spoken to,
feature to the project.

https://www.amazon.com/dp/B00XT0PH10
psc=1&ref=ppx_yo2_dt_b_product_details

New Hardware

The microphone has three leads.
1.VCC, connected to Arduino pin 12
2.Ground, connected to Arduino Uno GND
3.Out, connected to Arduino Uno pin 11.
 It's time to add a breadboard to the project.
 A breadboard will allow for more devices and a cleaner method of
 connecting items to the Arduino Uno.

In the example code, you will also see an output called BreadBoard.
This output is used to power the breadboard when the program is
running aids in keeping parts safe from mistakes while setting
things up.

One last item needed is a short bare wire 2-3 inches will work fine.

This wire will act as an antenna responding to EMF and Static electricity.

New Hardware
The microphone has three leads.
1.VCC, connected to Arduino Uno 3.3v
2.Ground, connected to Arduino Uno GND
3.Out, connected to Arduino Uno pin 11.

Let’s use the breadboard to add this new part.

 The Bread Board has power busses top and bottom tied together.

 Pin 12 on the Arduino Uno goes to the red bus on the breadboard “+.”

 GND on the Arduino goes to the Blue bus on the breadboard “GND.”

 Pin 11 on the Arduino goes to the OUT pin of the Microphone module.

 Pin 12 on the Arduino goes to the RED bus on the breadboard “+.”

Finally, the short wire 2-3” goes in Arduino pin A0, sticking straight up.

New Software

From the Tools menu, open the Library Manager.
Next, in the Library Manager search bar, enter Radio.
Select the Radio Library and install. Close the Library Manager
when done.

Use the link below to download the new Arduino program file
Save it to your computer and open it in the Arduino IDE editor.
The file is in a zip format.
Part 2 Arduino code

https://www.digitaldowsing.com/wp-content/uploads/2022/01/gb_scan_updn_part_2.zip

The Program line by line

It's not my intent to make you a programmer. Instead, I want you to know the
program's essential parts and how it works, also, how you can change it!

The sketch is straightforward, so everyone can follow what's going on
for you "gunners" out there, I'll go further from time to time after part 3.
Adding even more features.

Want to learn more about Arduino programming. Youtube has1000's of how-to
and instructional videos. Also arduino.org

http://arduino.org/

The Program line by line
//***
// Ghost Box program scans up then down flashes led on UNO indicates sweeping
// Microphone add and new library Mutes while not scanning
//***
/// \file TestTEA5767.ino
/// \brief An Arduino sketch to operate a TEA5767 chip based radio using the Radio library.
///
/// \author Matthias Hertel, http://www.mathertel.de
/// \copyright Copyright (c) 2014 by Matthias Hertel.\n
/// This work is licensed under a BSD style license.\n
// Added code for simple ghost box project 1.22.22
//***

The first series of lines have the Library creators copy write and basic information about this program, AKA sketch referred to by
the Arduino IDE.

The Program line by line

//***
// Includes
//***
#include <radio.h> // Library
#include <Wire.h> // SLC SDA communications for radio module
#include <TEA5767.h> // Tells Radio library how to interface the radio module
TEA5767 radio ; // Define radio model

Includes are files needed to access the library in the sketch the radio library.

The Program line by line

//**
// Global Variables
//**
int LED1 =13; // create a name for led1 on the Arduino
int hold =20; // hold is the delay time
int inc = 20; // How far to move when tuning
int start_FM = 8790; // US FM Band start **87.7 excluded
int stop_FM =10790; // US FM band stop
int breadboard = 12; // power pin to breadboard
int mic = 11; // microphone signal
int AntIn = 0; // antenna energy value 1 count = 1.1 / 1024 = .0010 volts

Global Variables, here we create names for pins on the Arduino or values that we need. This helps make the sketch
more readable. read the //comments on each for a brief explanation

The Program line by line

//***
// Program Setup
//***
void setup()
{
 pinMode(LED1, OUTPUT); // led1 on board led
 pinMode(bb , OUTPUT); // breadboard power
 Wire.begin(); // start IC2 communications
 digitalWrite(bb, HIGH); // power ON breadboard
 radio.init(); // Start radio
 radio.setMute(1); // Mute ON radio sound off
 delay(100); // allow breadboard to power ON allow connected devices time to start
}

Program setup, Here we tidy up a bit get things ready for the main section of the program. Setting output pins, starting
communications to the radio. Turn on the breadboard power and mute the radio output.

The Program line by line

//**
// Main program
//**
void loop()
{
 delay(10); // allow analog time to settle
 AntIn = analogRead(A0); // read energy on antenna
 radio.setMute(1); // radio mute ON
 int a = digitalRead(mic); // read mic to variable named a

Loop runs the main section of the program. This will take a few pages to get through. At the start, we run a short delay
this is required as the program loops to allow the AntIn time to sample. The energy value from the antenna is read and
stored in AntIn “Antenna in.” Next, the Mute is set to turn off the radio “this will make more sense later.
the last line here looks to see if the microphone is being triggered 1 = yes 0 = no

The Program line by line

 // to talk or not to talk
 if ((AntIn > 340) or (a == 0)) // if AntIn is greater than 340 or a = 1 mic on then scan
 {
 while (a == 0) // while mic = 1 wait here “mic is hearing sound”
 {
 delay(5); // delay 5 ms
 a = digitalRead(mic); // read mic to a
 }
 delay(500); // wait 1.5 seconds before responding
 radio.setMute(0); // un-mute the radio and allow it to scan

We look to see if either the AntIn “Antenna” or the Mic is triggered if both are false. The program
resumes at the top of the loop. If either is true, we check to ensure the Mic does not hear sound.
Once the Mic is quiet, we delay for a 1/2 second. Next, the radio is UN-muted, and we move to the scan

The Program line by line
 // for loop and scan from start-FM to stop-FM stepping by inc value in MHz
 for (int r = start_FM; r <= stop_FM;r = r+ inc)
 {
 digitalWrite(LED1, HIGH); // led ON
 radio.setFrequency(r); // Set radio to new frequency
 delay(hold/2); // wait here for 1/2 of hold
 digitalWrite(LED1, LOW); // led OFF
 delay(hold/2); // wait here for 1/2 of hold
 }

Scan from start-FM to stop-FM scan every .2 MHz the distance each possible channel set for on the
FM band. turn on the LED delay for 1/2 the value of hold “time in mills seconds.”
Turn off LED delay 1/2 hold again. Allowing the onboard LED to blink every time we scan to the
next station. Here we scan up the FM band from the first possible station to the last.

The Program line by line
// for loop and scan from stop-FM to start-FM stepping by inc value in MHz ** -/+ inc to prevent repeat scan
 for (int r = stop_FM-inc;r >= start_FM+inc;r = r- inc)
 {
 digitalWrite(LED1, HIGH); // led ON
 radio.setFrequency(r); // Set radio to new frequency
 delay(hold/2); // wait here for 1/2 of hold
 digitalWrite(LED1, LOW); // led OFF
 delay(hold/2); // wait here for 1/2 of hold
 }
 }
}
//***
// End of program
//***

The scan from start-Stop to start-FM scan every .2 MHz, the distance each possible channel is set for on the FM band.
We can scan just like before, except scanning back down the FM band. Turn on the LED delay for 1/2 the hold value "time in mills seconds." Turn off LED delay 1/2
hold again. Allowing the onboard LED to blink every time we scan to the
next station. Here we scan down the FM band, from the last possible station to the first. Finally, the program's end. The loop function will
go back to the first line in "Void loop" and repeat without end

Changes

In Variables, FM-Start and FM-Stop can be changed to select just a part of your local FM band.

int hold = 20; // hold is the delay time
Modify this to be how long you want to pause at each scan position IE: hold = 40 or 10

int inc = 20; // How far to move when tuning
Here we can adjust how far we move each scan step. You can tune in-between stations by changing this to .1
int start_FM = 8790 // US FM Band start **87.7 excluded
int stop_FM = 10790 // US FM band-stop
Modify these lines to change the start and stop point IE:9990 “99.9” or 10790 “107.9” to 10390 “103.9”
Allowing the radio to do a shorter scan faster scan. Try picking the most populated second than try the least.
After you have typed your changes, press the right arrow on the upper left of the Arduino IDE to send and
start the changes.

Changes
Currently, the sketch will scan from the Fm-Start to Fm-Stop
then scan back up to Fm-Stop. To change this to a simple scan down,
comment this code like bellow: // tells the IDE not to read this, also called a comment.

//for loop and scan from stop-FM to start-FM stepping by inc value in MHz

// for (int r = stop_FM-inc;r >= start_FM+inc;r = r- inc)
// {
// digitalWrite(LED1, HIGH); // led ON
// radio.setFrequency(r); // Set radio to new frequency
// delay(hold/2); // wait here for 1/2 of hold
// digitalWrite(LED1, LOW); // led OFF
// delay(hold/2); // wait here for 1/2 of hold
// }

Changes
Currently, the sketch will scan from the Fm-Start to Fm-Stop
then scan back down to Fm-Start. To change this to a simple scan up,
comment this code like bellow: // tells the IDE not to read this, also called a comment.

 // for loop and scan from start-FM to stop-FM stepping by inc value in MHz
 // for (int r = start_FM; r <= stop_FM;r = r+ inc)
 // {
 // digitalWrite(LED1, HIGH); // led ON
 // radio.setFrequency(r); // Set radio to new frequency
 // delay(hold/2); // wait here for 1/2 of hold
 // digitalWrite(LED1, LOW); // led OFF
 // delay(hold/2); // wait here for 1/2 of hold
 // }

Changes

It’s always a good idea to re-save your sketch with a different name
when making changes. If something goes wrong, you can get back to
what worked and figure out the issue.

Ghost Box Part 2 Wrap Up
At this point, your Ghost Box can scan up and down wait to respond till after you have asked it a question. Respond
to the energy around the device.

The sketch can select the range scan from any point on the FM dial: control scan time and scan distance of each
scan change.

In Part 3, I’ll discuss ways to power your ghost box without plugging it into the computer. Also, discuss adding a
display as well.

Having trouble? Did I screw up? Send me a message on Twitter to correct the error for everyone.

Have a great day!
Bill Chappell
BreadBoards & Bill

